
Architect ura I Features of

System 250

D. M. England - System Design Manager

(Published in the Infotech State of the
Art Report on Operating Systems, 1972)

Plessey Telecommunications Research Ltd ..

Taplow Court, Taplow,

Maidenhead,

Berks.

8

ARCHITECTURAL FEATURES OF SYSTEM 250

Abstract: The paper describes the hardware and software
modules of System 2~0, a multi-processor, multi-user
system designed for reliable real-time operation.

D. H. ENGLAND - System Design H.lnager.

Plessey Telecorrmunications Research - Taplow Court.

INTRODUCTION

1. System 250 is a major processing system develop
ment. It is part of the stored program control tele
phone switching prograllllle that the Plessey Company has
undertaken in cooperation with N.R.D.C. As well as
t€lephone switching, the system has wide application
in the real-time sector, particularly where there are
requirements for fault tolerance, expansion without
discontinuity or reprogranming, and the ability to
handle a large number of devices of varying character
istics.

2. From the outset, System 250 has been designed as a
complex of hardware and software. Careful attention
has been paid to the inclusion of hardware mechanisms
which support and simplify software operation. The
operating system is then a body of software which
exploits the hardware to present a logical and conven
ient set of facilities to the user.

3. This paper sets out to identify the architectural
and system design features of System 250 and to
describe the norwal operation of its constituent hard
ware modules and software packages. No more than
passing reference is made to the question of system
security and high availability, as this is outside the
sc~pe of the present paper.

SYSTEM HARDWARE CONCEPT

4. System 250 is a multi-processor. It may be

configured with a number of processors, stores, etc.,
according to the traffic characteristics of a given
installation. The number of hardware modules in an
installation may be increased to match traffic growth.
Yet all installations share a cofllTlOn architecture,
including a corrmon operating system. The system con-
cept, as it is expressed in hardware, is described by
reference to a typical configuration of modules (Fig.1):-

CPU Module

5. The system includes one or more identical 24 bit
word "CPU modules". Normally there are at least two
for redundancy. Principal system design features are
as follows:-

CPU

CPU

CPU

PI U PAA AUEL OEVICI INTERFACE UNIT
SIU S£A.IAL OIVICE. INTI.RFACE UNIT

FIG. I. TYPICAL HARDWARE CONFIGUr-ATION

(1) A CPU can c011111Unicate with any store module
by means of its own parallel NCPU busN.

(2) The CPU module includes an implementation of
base registers for addressing store that permits all
store to be dynamic and all code reentrant. These are
called •capability registers".

- 1 -

(3) Multiple CPUs share the system workload from
a colllllon work pool in store. All CPUs are equal and
no function is ever dedicated to a particular CPU.

Store Module

6. The system includes one or more "store modules" of
up to 64K each. Normally there are at least two, for

redundancy. Each store is interfaced to all CPU buses
by an "access unit". This contains address recognition
logic, so that it can detect and service access demands
on that store. It is also able to queue demands where
CPUs conter,d for access to that store.

Bus Multiplexor

7. The "bus multiplexor" is an access unit giving
access from CPU buses to the bus multiplexor's parallel
"peripheral bus" and thence to devices interfaced
to the peripheral bus. To preserve access to devices
in the event of failure, bus multiplexors and peripheral

buses are normally duplicated.

Parallel Devices

8. Each device is interfaced to both peripheral buses
by an access unit. Thus, each device looks to a CPU
like a store module containing a small number of words,
which are in fact the command, status, and data
registers of the device controller. The system con
tains no 10 instructions; CPU instructions like load
data and store data are sufficient to communicate with
these registers, the only difference from a store
module being the curious effects of such corrrnunication.

Device Polling

9. An input (or output) transfer on a particular
device, e.g. a disk, may be achieved by a "polling
program" running on one of the CPUs, polling a full/
empty binary in the corresponding status register, and
transferring the next word or character when it
indicates full (or empty).

Channelling

10. Being a multi-processor, the system requires no
autonomous channels or 10 processors; it employs CPU
power to perform the channelling function. The CPU

device, that is filled from (or emptied into) the

device at its own speed. This buffer is emptied into
(or filled from) main store by the polling program.

(2) Yhe ability of the block transfer instruction
in the CPU to detect the empty (or full) state of the

buffer store as a terminal condition of the instruction.
The block transfer may then be used within the polling
program to drain or top up a number of device buffers
in rotation. This ·introduces the concept of a
"channel 1 irlg program" in place of autonomous channels.

Serial Medium

11. To provide the ability to interface a large number
of low activity devices (e.g. teletypewriters, relay
banks), the system features a serial data collection and
distribution medium culminating in a "serial to
parallel adapter" (SPA), which is itself a device inter
faced to the peripheral buses:-

(l) \This "serial medium" cor,sists of a network of
primary (f° 4-way) and secondary (16-way) "data switches"
(PDS and ~DS) to which serial devices can be interfaced.

(2) The appearance of input data is detected at a
serial device interface and automatically transferred
on the serial medium to the SPA.

(3) Data is in the form of variable length (e.g.
word or character) data messages, which are collected
in or distributed from an input or output buffer
respectiv~ly in the SPA. In order to know its source
or destin~tion, each data message has attached to it
the identity of the device concerned, comprised of the
addresses of the primary and secondary switch ports that
provide its switch path through the serial medium.

(4) As a device on the parallel buses, the SPA
has its input buffer emptied and its output buffer
filled at suitable intervals by a polling program.

(5) To preserve access to serial devices in the
event of failure, normally an alternative path to each
device is provided by duplication of the SPA and serial
medfom.

Interrupts

12. System 250 has no external or device interrupts in
the cor.ventional sense:-

(1) The serial medium has the effect of servicing
module is enabled to perform simultaneous transfers on interrupts at the periphery and recording them in the
several devices by provision of two hardware mechanisms:- SPA for processing at the time allotted by the system.

(1) A first-in-first-out buffer store in each
(2) In the absence of autonomous channels there is

no requirement for channel interrupts, e.g. disk
-i-

interrupts. On completion of a transfer, the
channelling process is immediately capable of initi

ating a further transfer on the same ~evice.

Interval Timer

13. The requirement of any processing system to
measure time intervals is met in System 250 by an
"interval timer" resident in each CPU. An interval

timer's register may be loaded with a time value that
is automatically decremented in units of 100 ~sees.

When it reaches zero the program running on that CPU is

interrupted and the timeout is processed. It should
be noted that although the channelling program runs
interrupt inhibited, provision is made for the serv
icing of any timer interrupt at convenient points.

CAPABILITY CONCEPT

14. The root problem in the design of a multi-processor
is to find a method of sharing store between CPUs which
1 imits the scope for store corruption possessed by a
faulty CPU without limiting the freedom of the software
designer to structure his data and code in the most
natural and logical manner.

15. In System 250 the solution to ~his problem is the
"capability". The capability concept is the most

important feature of the system design, over the whole
of which it has exercised a considerable influence.
It is at the heart of many solutions to system design

problems. Far from limiting freedom it enhances the
power of the software designer to create explicit and
coherent program structures.

Capability Registers

16. As well as eight conventional "data registers",
there are in the CPU module eight "capability registers".
The purpose of a capability register is to provide a

means of addressing store. The format of a capability
register is shown in Fig. 2:-

(1) A capability register defines the lower and

upper bounds, base and limit, of a block wholly con-
tained within a store module (Fig.2a). It also
defines, in its "access field", the operations which
can be performed on that block.

(2) The words within the block can now be referred
to in instructions; the address construction takes the
base value from the specified capability register, and
using it an an addressing base adds the address offset

and (optionally) a modifier value to give the absolute
address of the word referred to (Fig. 2b).

(3) The access field is a six bit code, whose
constituent bit~ define the operations that are per

mitted on the block concerned, in any combination
·(Fig. 2c). The "read data" and "write data" access

types permit operations between the store blocks and
the data regi ~-ters, "load data" and "store data" being
the most obvious. Similarly, "read capability" and
"write capability" permit load and store operations

between the store block and capability registers. The
"execute" type permits the block to be executed as
program code. The "enter" type needs some elaboration
and is discussed in para. 24 below.

l•f CAPAIUllTY A[GIST[A

ISTOR[1

MO0UL£1 !

ACCCSS I LI ... IT

--
\

" \ .__ _____ __.

(II IN$TR1,,1CT1c,trr,1 FORMAT I AOOAESS CONSTAUCT10..,

DATA

OEG

AaSOLUTE AD0A[SS IASl

lcl ACCESS TYP£S

{

tNT[A CA AIILITT

CAPABILITY TYP(S WAIT[C&PAlt1,.ITY

A[AD CAPAIILI TY

{

EJ[CUT[

DATA TYPES Wltl1'[0A.1'A

AE.AO OAT.t

I I I. I.

;Jj

FIG 2 CAPABILITIES

+

I I I

OJFSlT

!
MOD

♦

)

17. Thus, a capability register defines the per-
mitted bounds of a store block and the operations per
mitted upon it. Any attempt by a program to refer
outside these bounds or to perform illicit operations
is detec~ed by hardware in the CPU and the program is
interrupted into a fault handler. The capability
register can now been seen to have two functions:-

(1) To provide an addressing base for access
to the store, as discussed above.

-3-

(2) To limit the scope of a program and thus con
tain its potential for store corruption in the event of
an error.

18. It should be noted that if an access field permits
data to be written into a block and read out again as
a capability value, then it is possible to manufacture
capabilities and thence gain access anywhere in the
storage system. Such access fields are consequently
forbidden; a block is very strictly either a capabil
ity type block or a data type block.

19. A capability, then, is an access right to a store
block. It can be held in a capability block, just as
data is held in a data block. It can be "loaded" into
a capability register when the block it defines requires
to be accessed. The operation of a CPU's load capabil-
ity instruction is depicted in Fig. 3,
follows.

described as

...J IA$£

I Ac I LIMIT

/ ~l"I I

LOAD CAPA.ILITT INTO

C111 PROM Cl61+ O"SlT

CAPAIIL 11'1' ILOCK

I
OFF$[T

(FROM INSTAUCTIOH I

/ Access llfoc1tu10[J'fnv 1 :::_

/
/

/
/

A[OUIR[D 11.ocr.

I

IYS TUA CAPAIILIT Y TA ILi:

IASC

\.IMIT

FIG 3 LOAD CAPABILITY

-1

i
I
I
i
I
I
I
I
I
I
I
I
I
I
I
i
i

j

(1) The base and limit values of all blocks within
the main storage system are contained within a special

-4-

block called the "system capability table", which is
defined by a special capability register.

(2) The required capability, held within a capa
bility block, instead of conttining the actual base/
limit values, contains an offset reference to the
system capability table entry containing the base/limit
values. The capability does however contain its own
access type for the required block.

(3) The effect of the load capability instruction
is to take the access field from the capability and
the base/limit values from the system capability table
and put them together in the required capability
register.

Capability Structure

20. The concept of a capability as an access right to
a store block may now be dissociated from the physical
location of the block in the storage system. The
system capability table is accessed automatically by
the load capability instruction and the programmer
need know nothing about it. He can imagine a capability
register to have the same format as a stored capability,
consisting of an access field and a block identity field
(Fig. 4). Conceptually, a capability (access right)
is loaded into a register when access to the corres
ponding block is required. Equally, a capability
held in_a register can be stored in a capability block
until access is required to the block defined.

cm! [1 j 1L0C• • t -

Cl., RC/WC, ILOC a I

/
/

/

cuAA(HT

COO(ILOC• •&

cuAA(H1 CAPAIIUT'I'
ILOC• -I

£ I ll.OCK A

•c
(I

A(twt) ILOC• C

/ OAT• ILOC.K•C

Ctll!ADII~ ILOCk C I

FIG 4 C4PABILITY STRUCTURE

21. By hardware conventions, one of the eight capabil
ity registers (C7) defines the code block currently
being executed and another defines a current capability
block (A and Bin Fig. 4), containing capabilities for
blocks that the code may want to operate on. Some of
these would be data blo~ks or other code blocks that
might have to be executed. Sorre might themselves be
capability blocks,giving access rights to a whole new
range of blocks. Following through the idea that a
capab'ility for one capability block can provide access
to further capability blocks and so on, a whole network
can be constructed consisting of code and data blocks
interconnected by capability blocks, as shown in Fig. 5.

FIGS CAPABILITY NETWORK

22. Looking more closely at this network, each of its
nodes consists of a capability block with satellite
code and data blocks, and even satellite capability
blocks giving access to further data blocks,etc., the
whole forming a nodal data structure on which its code
blocks can operate. A code block can operate on this
data structure so long as two capabilities are

supplied:-

(1) For the code block itself, in C7.
(2) For the node's main capability block, in C6,

giving access to all blocks of the node.

23. To see how these capabilities are supplied the
"enter" mechanism must be considered.

Enter Mechanisms and Dump Stack

24. _One of the available access types for a store block
is "enter" (Fig. 2c). Its purpose is to permit a

subrc,ut ine ea 11 from one node to another, or more
strictly a code block in one node to a code block in
anott;er, as follows:-

(1) ' The calling node has an enter type capability
for the m;lin capability block of the called node (See
Fig. 5). An offset down this block gives an execute
type capability for the required code block.

(2) The call is achieved by a CPU instruction
"ea 11 ", specifying the enter type capability and offset.
The -!ffect of the ea 11 instruction is to load C7 with
the 1?xecute type capability for the required code block
and to load C6 with the enter type capability for the
called node's main capability block. A read capability
access type is automatically supplied in C6, so that
the called node can read its own capabilities.

(3) The old values of C6 and C7, which define the
current capability and code blocks of the calling node
prior to the call, are automatically preserved in a
stack by the call instruction. These values are auto
matically restored when the called node performs the
CPU instruction "return".

25. It should be noted that possession on an enter type
capability does not permit the reading of capabilities
from the block defined; a calling node cannot rifle a
called node's capabilities and gain access to its
blocks. Further, the two nodes are mutually protected
from one another; they are denied access to one an
other's blocks by both "call" and "return" overwriting
C6 and C7. The remaining capability registers
{CO-CS) can however be used to carry parameters across
the interface between nodes.

26. The stack employed to preserve C6 and C7 values is
unique to the execution of a program, during which the
block containing it is defined by a special capability
register. This block is called a "dump stack", and
besides the stack is used to preserve register contents
on interrupt or context change.

-5-

Capabilities for Parallel Devices

27. A peripheral device interfaced to the peripheral
buses has the appearance of a small store module
(para. 8). Consequently, like any other block in the
storage system, its register set is ·defined by a capa
bility, permitting it to be operated on by standard
CPU instructions and protecting it against unauthorised
access.

OPERATING SYSTEM STRUCTURE

28. The operating system is designed as a modular set
of reentrant program packag~s which both run on and
control a hardware configuration as described above.
The broad structure of the operating system is depicted
in Fig. 6 and is in two parts:-

r
I
I
I

I
I

.-------,
USER COMMAND 1

L18AAR1fS
USER

STANDARD COMMA.SO

SOFTWARE Ll&RAR.IES

COMMANO

IHT[RPRETEA

JOB MANAGEMENT

OIA[CTORY MANA.CEMENT

T[XTFILE MANAGEMENT

INPUT/OUTPUT MANAGE~ENT

PROCESS MANAGEMENT

STORE MANAGEMENT

USER
T[AMINAL

SYSTEM

IASIC
CONTROL
SYSTEM

FIG 6 8ROAO STRUCTURE OF OPERATING SYSTEM

(1) Basic Control System - The purpose of the
"basic control system" is to provide the user with con
venient standard facilities for management of storage,
processing power, and input/output resources without
him being concerned with the mechanics of controlling
hardware modules. Moreover, the operating system
renders a user program unconscious of the hardware
modules which furnish its resource requirement, and
therefore insensitive to any changes in the number of
CPUs and storage modules which are on-line at any
given time.

(2) User Terminal System - The purpose of the
•user terminal system" is to provide a standard, recur
sive syntax in which the user can express cOllJTlands to
System 250 (Fig. 7 shows examples of coomands). This
fs achieved by means of a standard •comnand interpreter"
package, which interprets each command and obeys it by
executing an associated "collli13nd program". The
operating system includes a set of comnands which enable

-6-

the user to define his own conmand programs, resulting

in a "comnand language" that is freely extendable
according to the user's conmand requirements. Certain
other standard "conmand libraries" are available within
the operating system to provide program d~velopment and
job control facilities. Because it is fully reentrant,
the operating system can support an arbitrary number
of active terminals, thereby achieving a multi-access
utility.

LOOP:

UPPER:

LOGIN SMITH JOB\5

ASM BINSEARCH (

•• BINARY SEARCH SUBROUTINE

INPUT: Cl CONTAINS CAPABILITY FOR 111.0CK

D2 CONTAINS PATTERN TO BE HATCHED

03 CONTAINS ADDRESS OF MIDDLE ELEMENT

INDICATORS: ZERO SET IF MATCH, NONZERO SET
IF NO W.TCH ••

LO 01 0 •• SET START AOORESS ••

OR Dl D3 •.• OR IN TRIAL INCREMENT ••

Ct-lP D2 TBL 01 Cl •• COMPARE WITH ELEMENT ••

JEQ FINISH •• JUMP OUT IF l',t,TCH ••

JGT UPPER •• JUMP IF UPPER AALF ••

EOR Dl DJ •• LOWER AALF • REK>YE INCREMENT • •

LSH DJ ·1 .. SHIFT INCREMENT RIGHT ON£ PLACE ..

Jl'IE LOOP •• REPEAT IF NOT FINISHED ••

CMP D2 TBL D1 Cl .. SET INDICATORS ..

FINISH: RET •• RETURN TO CALLER ••)

PRll'IT GLDFILE

BL'JCK FRED 615 RWD

PR XESS ANAL ~SER CAPX COOU

AT JOE 3 (PRINT FRED (2*P)

N:=(N·l)
If NcO THEN (REMOVE JOE 3)I

LOGOUT

f!G. 7. EX'-KPLES OF CCJl,W,.IIOS

RESOURCE MANAGEMENT

29. The principal system design features of operating
system packages are described below:-

Store Manage~ent

30. (1) Dynamic Storage - The "store management
package" employs the capability mechanism to achieve
a dynamic storage scheme in which a program may
request unique blocks of store at run time and be

delivered ;capabilities for them giving the required
access rights. It should be remembered that the
capability mechanism protects this dynamic data
structure from unauthorised access by other programs.

(2) Virtual Store - The capability concept is
extended from main store to disks. permitting the capa
bility structure to extend over the whole of the
storage system. This achieves a virtual storage
scheme, in which the distinction between main and
backing stores is transparent to user programs.
Initiating transfers between the two is the responsibil
ity of the store management package. A block is moved
in when an attempt is made to access it or rooved out
again to maintain a reservoir of directly accessible
storage. The blocks selected for moving out are those
that have remained longest in main store without being
accessed.

(3) Capabilities on Disk - The format of a
capability on a disk includes disk identity and address
fields in place of the system capability table offset
(para. 19). Whenever a capability block is moved in
or out its constituent cap3bil ities are transformed
accordingly. This means that a capability in main
store must have a corresponding system capability table
entry, even though the corresponding block may only
exist on disk. An attempt to access such a block is
detected by a simple hardware mechanism, and the block
is moved in to permit the accessing program to proceed.

(4) Deallocation and Garbage Collection - When a
program requests a store block, the store management
package allocates disk space for it. IJhen subsequently
the program explicitly releases the block, this disk
space is rendered reusable ~y invalijating all existing
capabilities that refer to it (This is achieved by a
disk sector sequence number mechanism). A background
"garbage collection program" seeks out and destroys
invalid capabilities and blocks that have been severed
by program error from the main capability network of the
system.

Process Management

31. (1) Processes - The dynamic allocation of blocks
containing the active data of a running program permits
that program to be reentrant. The term applied to the
execution of a reentrant program is a "process", and
for a given program there may be many processes simul
taneously in existence at any instant. The "process
management package" is concerned with the creation,
scheduling, and synchronisation of processes.

(2) Scheduling - It should be noted that the
cOlllllOn work list (para. 5) employed to achieve a load
sharing philosophy for CPUs is actually a priority
structured "process ready list" of processes in an
executable condition. lt is transparent to the process

at the head of the list which CPU happens to schedule
and execute it. Thus, the introduction of a furthzr

CPU simply increases the available processing capacity
by increasing the number of processes that can be
executed simultaneously. lt has no effect on the
structure of System 250 programs.

(3) Synchronising Flags - The facility provided by
the process management package for corrrnunication between
processes is a "flag"; one process "posts" a message
"on a flag" and the other "waits for" it. Synchronis
ation for message passing between asynchronously
operating processes fs achieved by permitting Mposts 0

and "wait for" to occur in arbitrary order; a flag may
then hold a message until "waited for" or hold a process
in suspension until the message is "posted". In
fact, a flag may hold a number of separately posted
messages and may be accessible by several processes, so
that a flag may be viewed as a data structure consisting
of either a queue of posted messages, that are to be
waited for in turn, or a queue of suspended processes

waiting for messages to be posted.
(4) Time Intervals and Multiple Events - The

event awaited by a process may be expiry of a time
i nterva 1 rather than de 1 i very of a message. In this
case, the process is held in a time ordered chain of
suspended processes. This "time chain" is serviced
by "interrupt processes" in response to interval
timer interrupts (para. 13). A process is permitted
to wait for one of a number of possible events, e.g.
a telephone switching process might wait for a message
indicating the next dialled digit, or a message that
the subscriber's handset had been returned to its rest,
or expiry of a time interval indicating some abnormal
condition. Fig. 8 depicts a multiple wait for situation;
the suspended process (x) has entries in several queues.
forming <i circular list as shown. When one event occurs
the others are automatically cancelled and the process
is entered in the process ready list with a parameter
set to indicate the event which occurred.

lnput/Output Management

32. The "input/output management package" includes the
polling/channelling programs discussed in para. 9ff
and handlers for all parallel and serial devices:-

(1) Channelling - The transfer of data between
main store and parallel devices (see para. 10) is
effected by a "channelling process" (Fig. 9), which
is able to support a number of sirrultaneous transfers
according to an installation defined "channel schedule".

-7-

The "channels" are actually device handler subroutines
and they are called in rotation, the action of a
channel during a transfer being to drain or top up the
associated device buffer. The channel also sets up
a new transfer on completion of any previous transfer.

FLAG A
l'ROCUS

fl'ROClSS

"'

TIM(CHAIN

PROCUI PROCUS

'PAOC.[IS

.It

l'ROC[SS

PROCUS

PAOCUS

PROClH

FIG I MULTIPLE WAIT FOR. A OR 8 OR TIME INCREMENT

(2) Disk Optimisation - A disk channel receives
its transfer requests from the store management
package; for example, there is a process which selects
blocks for moving out. These requests are inserted
in an optimisation queue according to the track/sector
location of the block. On completion of a transfer,
the disk channel is immediately able in software to
select another transfer from the optimisation queue
according to the sector position of the read/write
heads. Thus, channelling by software achieves a
high degree of optimisation without either the
channel inefficiencies inherent in device interrupts
or the alternative of complex channelling equipment.

(3) Channelling Processes and Channel Schedules
Each channel must draw an amount of processing power
dependent on the device speed. The total processing
requirement of a channel schedule may not exceed the
power of one CPU if the overflow of device buffers and
consequent loss of data is to be avoided. Consequen-
tly, a system may include a number of channelling
processes, handling separate sets of devices, which
between them can occupy that number of CPUs. More-

(4) Serial Medium Handling - A "serial medium
handler" is a process which is applied at regular
intervals to the data read from an SPA input buffer
(para. 11). The structure of a serial medium
handler is an exact mapping of the associated serial
medium, consisting of a cascade of data switch
handlers terminating in serial device handlers (Fig. 10).
Each handler is a node of the ca·pability ~etwork, and
each data switch handler includes a "switch list" of
enter type capabilities corresponding to the ports
of the data switch. For each data message, using
the port addresses given in the device identity as
switch indexes, the serial medium handler switches
to the associated device handler to process the
message.

AC

CtO,kH(I..

SCHtOUllA
COO£

[N

lN

lN

lN

[N

'---v----' ~ ~
(HANN[L

SCHIDUU HANOL[•

IUIIOU'TIN(S.
ICHANNILI I

FIG 9. SOFTWARE CHANNELLING

OIVICI
IU,,llS

(5) Serial Medium Status Messages - The first
two data bits (say) of a message may be used to
identify different registers in the device, e.g. data
and status registers. This 1s particularly important
for certain output dP.vices; e.g. paper tape punch, as
the input of a status message is used to indicate to the
device handler that the device is ready for the next
output message. The device handler forms the next
output message, ready for transfer to the SPA output
buffer. Thus, the serial medium handler handles both
input and output messages, and output is made to look
almost identical to input.

(6) Serial Medium Handlers and Switch Lists -
A system may include a serial medium handler process

over, optimisation of a channel schedule can be achieved
by applying more than one channel to faster devices,
i.e. calling their device handlers more than once per
cycle. The important point to note is that, like'
hardware modules, channel schedules and processes are for each active serial medium.

serial medium handler's switch
8-

configurable for a given installation.

Furthennore, each
lists are configurable

for a given installation in a manner analogous to the
serial medium hardware modules.

(7) S~ooling - A paper tape reader or punch or
lineprinter is normally allocated to a "spooling
process". The set of such processes takes advantage
of the virtual store to achieve a conventional spooling
arrangement; user programs are thereby rendered device
independent, and conmunicate their input and output
through the medium of "data streams". It should be
noted that a paper_ tape reader handler provides the
corrrnunication medium between its serial medium
handler and spooling process. Both processes have an
enter type capability for the tape reader handler, and
call different subroutines within it to buffer input
characters and get lines of text respectively. Synch-
ronisation of the two processes, to pass across lines
of text,is achieved by means of a flag as described
above.

.PA

INPUT

ANAL'f'S(

SDS

AC

HANDL(A

coot

EH

O(VIC[

MANDLER

FIG 10 SERIAL MEDIUM HANDLER

1>1.VICl
HANOL[RS

-9-

File, Directory, and Job Management

33. The purpose of these packages is to provide fac
ilities for the use of conmand programs, that are
required to implement the user terminal system:-

(1) Job Management - The "job management
package" is concerned with the management of a "job" or
family of processes. All the processes constituting

' a job reference a corrrnon "job control block•, which can
be used to e>:erci se contro 1 over a 11 these processes
at once, e.g. the setting of a particular bit stops any
of them being scheduled and therefore suspends the job.

(2) Textfile Management - A "textfile" is a data
structure containing lines of text characters, which
may for example be source programs. The "textfile
management package" provides facilities for creating
and editing textfiles.

(3) Di i·ectory Management - The "di rectory
management package" provides faci 1 ities for creating and
maintaining "directories" of names referring to blocks,
textfiles, jobs, other directories, etc. Directories
are employed within the user terminal system to main
tain a record of user defined names.

THE USER/RESOURCE INTERFACE

34. This section describes how the various resources
provided by operating system packages are realised and
represented and how they are accessed by user programs.

Resource Allocation

35. From physical system resources provided by a hard
ware configuration the operating system derives "logical
resources" convenient to the user, namely:-

STORE BLOCK
PROCESS
FLAG
STREAM
TEXTFILE
DIRECTORY
JOB

The simplest of these resources is a single store block.
Each of them con~ists of a data structure of blocks that
is dynamically a.llocated by the corresponding operating
system package when requested by a running process.
Each package contains a "resource allocation subroutine"
that may be called by means of an enter type capability

(para.24). A single read type capability gives a
process access to all_ resource allocation subroutines
via a "co111110n facilities block" (Fig. 11).

COMMON
F ACILITII S &LOCK

[N STORE Al.LOCATOR

EN l'AOCUS ALLOCATOR

IN 'LAG Al.LOCATOR

lN STREAM ALLOCATOR

IN TUTFILE Al.LOCATOR

EN DIRICTOIW ALLOCATOR

IN JOI ALLOCATOR

FIG II COMMON FACILITIES BLOCK

A Standard Software Interface

36. When a resource allocation subroutine is called
within a running process it creates a suitable resource
and returns a capability for that resource. In the
case of a store block, this capability gives the access
required to operate on words in the block in the normal
way by CPU instructions. In the case of any other
resource, the capability is of enter type and allows
1>ennitted operations on the resource by calling sub
routines within the operating system package concerned
(Fig. 12), e.g. to "post" and "wait for" messages on a
flag. The following points are of particular note:-

CAPAalllfV
roa fLAC

STANDARD
USIA

tfrilTERFACE

(NlEA EX

£1

AC/we
RC/WC

OPERATING SYSTEM
CODE ILOCl<S

FLAG'$ OATA STRUCTURE

FIG.12 A RESOURCE I ITS INTERFACE, EG.,A FLAG

provided there is a corresponding code block.
(3) Every resource is represented by a single

capability. Except for store blocks, every resource
is a dynamically created node of the capability network,
and the capability representing it provides a unique
entry to the operating system for processing that ,
resource alone.

{4) The capability provides a standard software
interface, giving access rights to perform a permitted
range of operations on the resource it represents, be
it a single block or a complex data structure. Thus,
in System 250 any resource (and the user can create
his own) is accessed and manipulated in a standard
manner regardless of the data structures and manipul
ations involved.

(5) It should be noted that to the user there is
no distinction between manipulating store blocks by
means of CPU instructions and other resources by
,neans of operating system sub~outines. The operating
system simply provides a supplementary instruction set
for manipulating more complex resources than a single
~lock.

USER TERMINAL SYSTEM

Coomand Interpreter

37. When the user approaches a terminal and operates
an "attention key", this causes a "conrnand interpreter
process" to be created, the purpose of which is to
interpret and obey each command subsequently typed at
the terminal keyboard. A conmand consists of a
conmand name together with a string of parameters, any
of which may themselves be conmands (see Fig. 7).
The program code of the corrmand interpreter is
recursive, so that it can preserve the state of one
command to obey a nested conmand, to any level of
nesting.

38. The coo-mand interpreter process requests a direct
ory (para. 33(3)) to use as its "symbol table"

(Fig. 13), in which to contain each symbolic name
introduced at the tenninal together with its associated
capability or data value. For example, in Fig. 7 the
parameter "LOOP" of the conmand ":" would have an

(1) System 250 has no pdvileged mode of operation; associated label offset data value, and "FRED" would
the protected nature of subroutine interfaces (para. 24) have an associated capability for a store block.
permits nonnal subroutine calls for en~ering operating
system code blocks. Jg. "C011111and names• are themselves recorded in the

(2) The modular structure of operating system symbol table, with capabilities for associated
packages is explicit to the user; for each facility "corrmand programs"

-10-
The action of the cOtl'l!land

interpreter, in obeying each co1T111c1nd typed at the
tenninal keyboard, is to execute the associated co1T111and
program. A corrmand program may either be a code
block, which can be executed directly, or a string of
c0111nands that must be obeyed in turn.

SYMIOLIC
NAMES

OATA
VALUES

CA!OAIILITY
VAL.UC!>

FIG 13 SYMBOL TABLE

COMMAND
PJl:OG,.AMS

COMMAND

INT[APA [T[R

PROClSS

40. When a c0111Tiand program is executed it calls for
extraction and evaluation of the actual parameters
from the corrmand, at required points, by means of a
"parameter evaluation" co11111and. If the parameter
is a symbol, its associated value is directly available
in the symbol table. If it is a nested co11111and, its
corrmand name is found in the symbol table and the
associated co11111and program is executed to deliver the
required value.

Standard Co1T111c1nd Libraries

41. The standard corrrnand libraries extend the facil
ities of operating system packages to the terminal,
where these facilities are then available for the
user to create and manipulate resources at the keyboard.
By typing a c011111and, the user gets the associated

conmand program to call the operating system and
employ its facilities on his behalf. The set of
standard c01T111and libraries includes the following:-

(1) 4ssembly and Conmand Definition-_ The
"assembly ,:on-mands" are used to generate blocks of
program code. There is an assembly conmand for each
CPU instruction and each operating system facility.
Obeying such a COITllland generates the required binary
instruction(s), and obeying a string of them within an
"assemble collllland'.' (ASM in F'ig. 7) causes program code
to be assembled into a symbolically named store block
(BINSEARCH in F'ig. 7) allocated for the purpose.
"Corrmand definition" coirrnands pennit the user to
create new coirmands compounded from existing ones.
Besides allowing him to create his own corrrnand structures,
these conmands provide a conventional macro-assembly
facility.

(2) Store and Process Conmands - These are the
analogue of the store management and process management
facilities, and permit store blocks and processes to be
created, symbolically named, and manipulated at a
terminal keyboard.

(3) Directory Control - Were the user to "log
out" from the terminal, the conmand interpreter and
all its data structure, including the symbol table,
would be released. To give permanence to his
resources, the user is provided with a "directory"
in which to preserve them. This is part of the
system data structure. With this as the user's
"base director.v", he u,ay employ "directory control"
conmands to create a structure of named directories
(F'ig. 14), from which he can retrieve his resources
when required. The base directory is initialised to
give access to system directories containing the
standard corrmand libraries. It may also be initialised
to give access to directories that are c01T111on to a

number of users, so that they·can have resources in
c01l11l0n, e.g. when writing different parts of the same
software system.

(4) Job and Textfile Control - A symbol table may
include capabilities for named processes, which can
create further processes, etc., all of which constitute
a job and reference its job control block (para. 33(1)).
The job control block is created at the same time as

the conmand interpreter process. The symbol table is
referenced from the job control block, and is therefore
part of the job's data structure. By giving the job
a name, using a "job control" coirmand, and preserving

-11-

it in a directory, the job is rendered independent of
the conmand interpreter process; the user can "log
out" from the terminal and leave the job running. When
he "logs in" agaTI he can restore control over the job
by naming it; this furnishes the new conmand inter
preter process with the original symbol table. Job
control conmands are available for naming the data
streams (para. 32(7)) to be employed by conmand
interpreter and user processes. Typically. a textfile
(para. 33(2)) containing an ASM conmand might provide
the input source to a conmand interpreter process.
Contnands are available to create and edit textfiles
and also to insert monitor points and achieve selective
prinl-outs for program testing purposes, e.g. the
c011111ands AT, PRINT. etc. in Fig. 7.

SYS1£._. 0IA[CTOIW
STRUCTURE

usun. BASE
DIA[CTORY

S't'STCM

PAOGJ

C.EOAG.l

PROcv
l)tAI

....... ----..COO[A

COO£&

OATAA

CAPX

DIAX OIR[CTOAY

FIG 14 TYPICAL USE.FI DIRECTORY STRUCTURE

Multiple Users and their Jobs

42. Finally, there are two points of particular
importance regarding the nature of the user terminal
system:-

(1) The whole of a user's data structure stems
from his base directory and is protected by the
capabilities ·that define it from unauthorised access
by other users. This is equally true of a job's
data structure, ste11111ing from its job control block.
Because the integrity of data structures is assured
by their mutual exclusion, a given installation may
support an arbitrary number of independent users, each
of whom may have several discrete jobs. Nonetheless,
the directory structure permits a conscious decision to
share resources between users and/or jobs. with

coomensurate loss of independence.
(2) So long as a System 250 installation, possesses

sufficient capacity to service all its c011111itments,
each of the users' jobs may be a discrete real-time
system. including dedicated serial and parallel
devices (see para. 27). Device handlers for dedicated
peripherals might be included within the self-contained
data structure of each real-time job. Alternatively,
the directory structur~ permits the sharing. for
example. of a serial medium handler process and there
fore the associated serial medium. This process
might be configured (para. 32(6)) to include device
hand.ler subroutines belonging to several jobs.

ACKNOWLEDGEMENTS

43. The architectural simplicity and coherence of
System 250 is due to the creative discontent of its
designers, the wisdom and courage of their consultants,
especially Professor M. V. Wilkes. Dr. R.S. Fabry,
Mr. M. O'Halloran and Mr. M. Berry.and the patience and
confidence of the Plessey Company.

(1) J:i4. Cotton

(2) D. Halton

(3) D.M. England

BIBLIOGRAPHY

"The Operational Requirements for
Future Conmunications Control
Processors", Proceedings of
International Switching Symposium,
Boston, Mas .• June 1972.

"Hardware of the System 250" for
Co11111unicat<ion Control". ibid.

"Operating System of System 250'~ ibid.

(4) W.A.C. He11111ings "Telephone Switching Based on
System 250", ibid.

(5) M.V. Wilkes

(6) R.S. Fabry

(7) E. Dijkstra

-12-

"Time Sharing Computer Systems",
Macdonald.

"List Structured Addressing",
Ph.D dissertation, University of
Chicago, Illinois, June 1970.

"The Structure of 'THE' Multi
Progra11111ing System". CORlR. ACM
Vol, 11, No. 5, May 1968, pp 341-346.

